MTD time calibration

Timing days 17th January 2019

Fabio Monti, Andrea Beschi, Andrea Benaglia, Martina Malberti, Tommaso Tabarelli, Alessio Ghezzi

Importance of the time calibration

- In order to achieve 4D track reconstruction → MTD channels synchronization required to be of few ps
- Absolute synchronization wrt LHC clock is not fundamental
 - Event reconstruction relies on relative time between tracks within the same bunch crossing
- What to calibrate exactly?
 - relative time shift of single channels
 - relative shifts of the Readout Units
 - Time dependence vs position for BTL
 - Time dependence vs layer for ETL

BTL Readout Unit

- 1 channel := 1 SiPM \rightarrow 2 channels per crystal bar
- Readout Unit
 - 24 TOFhir chips
 - \circ 384 crystals \rightarrow 768 channels
- Clock from LHC to each Readout Unit \rightarrow distributed to each TOFhir

Time reconstruction

• Time of the track is measured as:

In ETL use the time of the 2 detector layers (indipendent)

 $\mathbf{c}_1 \times (\mathbf{t}_{1av1} - \Delta \mathbf{t}_{SYNC1}) + \mathbf{c}_2 \times (\mathbf{t}_{1av2} - \Delta \mathbf{t}_{SYNC2}) - \mathbf{c}_1 \times (\mathbf{t}_{1av2} - \Delta \mathbf{t}_{SYNC2})$

to be calibrated

bar sides (anticorrelated) $c_1 \times (t_L - \Delta t_{SYNCL}) + c_2 \times (t_R - \Delta t_{SYNCR}) - TOF$

In BTL use the time of the 2 SiPMs at

• Main contributions are :

$$t_{TRK} = t_{VTX} + TOF + t_{DET} + \Delta t_{SYNC RU} + \Delta t_{SYNC CH}$$

TOF

$$t_{VTX}$$
 = time of the vertex

t_{DET} = detection time-----In BTL scintillation + light propagation in the bar + electronics

In ETL charge drift in silicon + electronics

- $\Delta t_{SYNC RU}$ = sync time of the Readout Unit \leftarrow to be calibrated
- $\Delta t_{\text{SYNC CH}}$ = sync time of the single crystal
- \leftarrow to be calibrated

Min bias events for the calibration

- For the calibration use all the tracks collected by the HLT
- Number of tracks is fundamental to achieve the target precision
- Assuming:
 - 1 kHz HLT rate
 - 5% occupancy per channel to be conservative (more likely 8%)
 - 23 s lumisections
- The expected number of min bias events is
 - \circ ~ 10³ evts / channel / ls
 - \circ ~ 10⁴ evts / channel / 200 s
 - \circ ~ 2 · 10⁴ evts / Readout Unit / 1 s

Calibration of c_1 and c_2 for BTL

- $slope_1$ and $slope_2$ describes the dependence of t_1 and t_2 from impact point, along ϕ direction (ϕ -geometry)
- slope₁ and slope₂ can be measured fitting t₁ and t₂ vs extrapolated impact point
 - $\circ~$ test beam show dependence on MIP impact angle \rightarrow on $\mathrm{p_{T}}$
- $c_1 = slope_1 / (slope_1 + slope_2)$ and $c_2 = slope_2 / (slope_1 + slope_2)$
- Required precision on slope is at least ~ 11%
- Ongoing studies with CMS simulation to estimate the expected precision on the slope in p_{τ} bins

Relation between c_1 and c_2 calibration and Δt_{SYNC}

- In a perfect world for each lumisection:
 - 1. Calibrate the slopes \rightarrow compute c_1 and c_2
 - 2. Calibrate Δt_{SYNC} on top of it
- BUT in order to achieve a sufficient precision on the slopes (~11%) more than a lumisection is required (from preliminary results ~10²-10³ lumisection)
- Slopes expected to be stable in a time scale of ~ week (constant MTD conditions)
- Proposed method: split Δt_{SYNC} in the 2 contributions Δt_{SYNC1} and Δt_{SYNC2}
 - 1. Calibrate separately Δt_{SYNC1} and Δt_{SYNC2} per lumisection
 - 2. Calibrate the slopes on top of it per 10^2 - 10^3 lumisections

Calibration of Δt_{SYNC} for BTL

- Measure the time distribution of the tracks and compare it to the bunch crossing nominal time
- Using min bias data of a lumisection: ~10³ events / ch / ls
- Time spread of the beamspot ~ 200 ps RMS
- If independent calibration of SiPM_{LEFT} and SiPM_{RIGHT}
 - Spread due to light propagation in the bar =
 - = 50 mm * 6 ps/mm / sqrt(12) = 108 ps
 - Single SiPM time resolution = 40 ps
 - ➤ Exp. precision = (200 ⊕ 87 ⊕ 40) ps / sqrt(1000) = 7.3 ps
- If calibration only of $c_1 \times t_{LEFT} + c_2 \times t_{RIGHT}$ with $c_1 = c_2 = \frac{1}{2}$ \circ Sensor time resolution = 30 ps
- Values obtained neglecting the impact of the TOF back-propagation
 Use simulation to estimate the precision of the method

Simulation setup

- Simulate min-bias events using CMSSW with phi-geometry, 0-pileup
- For each track use the time of the crystal with the largest energy deposit
- Limited number of simulated events
 - Not possible to calibrate separately each bar/SiPM
 - \circ Take the time distribution in different $\eta\mbox{-}regions$ and use a MC toy to generate the required number of events
- Once back-propagated, time distribution is independent from η
 - Dominated by beamspot spread
 - Correlation at different η due to tracks coming from the same vertex

Shape of the distribution

 Right tail in distribution due to π-mass hypothesis for p and k in back-propagation procedure

Calibration precision vs number min bias events

- Results for direct calibration of the bar $((t_{LEFT} + t_{RIGHT})/2)$
- Distribution is not symmetric
 - Try different estimators: mean, median, mode, gaus fit of the core, truncated mean
- Calibration uncertainty = spread between the injected time offset and the estimated time offset
- Best method: median

Calibration precision vs Pt cut

- The cut Pt>Pt_{min} :
 - Reduces the efficiency
 - Reduces the tails in the distribution due to protons and kaons
 - Visible effect only with a cut Pt>2 GeV \rightarrow ~10% efficiency
- The reduction of efficiency is the dominating effect
 - \circ $\;$ Best result achieved with full \textbf{p}_{T} acceptance

Summary

- Performed feasibility study of the MTD time calibration
 - Mainly focused on BTL calibration: can be easily generalized to ETL (studies ongoing)
 - Expected precision below 10 ps for single channel calibration and below 3 ps for Readout Unit calibration
 - Study of additional systematic effects ongoing (pileup, short period clock instabilities, in-lumisection changes)
- Calibration constants can be made available for the the Prompt reconstruction
- The MTD channel synchronization will not be a limiting factor in the MTD operation

BACKUP

Median vs η

• Median estimator is stable vs η within ~ 3-4 ps

Calibration precision using different estimators

- At large number of events the mode is not reliable due to the binning
- Template fit is better than the median but additional uncertainty expected
 - The template function does not match exactly with the distribution as assumed in the toy

